Business PreCalculus MATH 1643 Section 004, Spring 2014 Lesson 17: Composite Functions

Functions can be added, subtracted, multiplied, and divided to produce other functions.

Definition 1. <u>Sum and Difference of Functions</u>: The sum of two functions is defined by (f + g)(x) = f(x) + g(x). The difference of two functions is defined by (f - g)(x) = f(x) - g(x).

Definition 2. Product and Quotient of Functions: The product of two functions is defined by (fg)(x) = f(x).g(x). The quotient of two functions is defined by $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$.

Example 1. Let $f(x) = x^2 - 6x + 8$ and g(x) = x - 2. Then

$$(f+g)(x) = f(x) + g(x)$$

= $x^2 - 6x + 8 + (x-2)$
= $x^2 - 6x + 8 + x - 2$
= $x^2 - 5x + 6$.

$$(f-g)(x) = f(x) - g(x)$$

= $x^2 - 6x + 8 - (x-2)$
= $x^2 - 6x + 8 - x + 2$
= $x^2 - 7x + 10$.

$$(fg)(x) = f(x).g(x) = (x^2 - 6x + 8)(x - 2) = x^3 - 8x^2 + 20x - 16$$

$$(\frac{f}{g})(x) = \frac{f(x)}{g(x)} = \frac{x^2 - 6x + 8}{x - 2} = \frac{(x - 2)(x - 4)}{x - 2}, \ x \neq 2 = x - 4, \ x \neq 2.$$

Definition 3. Composition of Functions: Let f(x) and g(x) be two functions, then the composition of the function f with the function g is written as $f \circ g$ and is defined by the equation

$$(f \circ g)(x) = f(g(x)),$$

where the domain of $f \circ g$ consists of those values x in the domain of g for which g(x) is in the domain of f.

Example 2. Let $f(x) = x^2 - 6x + 8$ and g(x) = x - 2. Then

$$(f \circ g)(x) = f(g(x))$$

= $f(x - 2)$
= $(x - 2)^2 - 6(x - 2) + 8$
= $x^2 - 2x + 4 - 6x + 12 + 8$
= $x^2 - 8x + 24$.

$$(g \circ f)(x) = g(f(x))$$

= $g(x^2 - 6x + 8)$
= $x^2 - 6x + 8 - 2$
= $x^2 - 6x + 6$.

Example 3. Finding the Domain of a Composite Function: Let $f(x) = x^2$ and $g(x) = \sqrt{x}$. Then

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x})$$

Since, the domain of $g(x) = \sqrt{x}$ is $[0, \infty)$, then

$$(f \circ g)(x) = (\sqrt{x})^2, \ x \ge 0$$
$$= x, \ x \ge 0.$$

Therefore, the domain of $(f \circ g)(x) = x$ is $[0, \infty)$.

Definition 4. Decomposition of a Function: Sometimes it is useful to use the concept of composition to decompose a function into simpler functions. For example, $H(x) = \frac{1}{\sqrt{2x^2+1}}$ can be written as H(x) = f(g(x)) with $f(x) = \frac{1}{\sqrt{x}}$ and $g(x) = 2x^2 + 1$.

Example 4. Decompose $H(x) = (x^2 - 3)^{10}$ into $(f \circ g)(x)$.

Solution: H(x) = f(g(x)) with $f(x) = x^{10}$ and $g(x) = x^2 - 3$.